

LedgerDB : Alibaba's Centralized Ledger Database

- Xinying(Derry) YANG

Terminologies

- DLT (Decentralized Ledger Technology)
- CLT (Centralized Ledger Technology)
 - CLD (Centralized Ledger Database): LedgerDB, QLDB, Oracle BC Table, ProvenDB, etc.
- Immutability: Any piece of data, once committed into the system, cannot be modified by subsequent operations and becomes permanently available.
- Verifiability: The capability of validating specific data integrity and operation proofs.
- Auditability: The capability of observing a serial of user actions and operation trails based on predefined audit rules.
 - Internal audit: an internal user of the ledger can observe and verify the authenticity of all actions.
 - External audit: an external third-party entity can observe and verify the authenticity of all actions.

Credibility for Traditional Database Applications

Centralized DBMS

• Cloud (Distributed) DBMS

• Bigdata & No-SQL

Here comes ledger technique

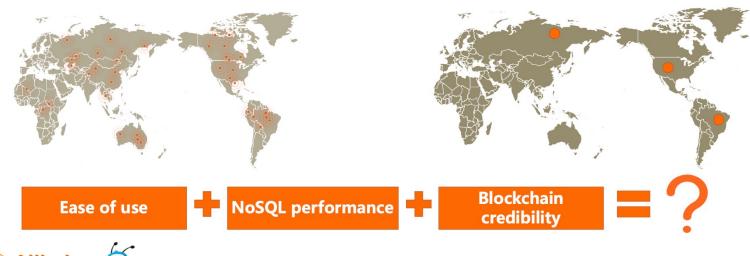
DLT Dilemma

Permissionless blockchains: Bitcoin, Ethereum, etc. Pros:

• Massive peers, widely spread, highly decentralized

Cons:

• Extremely low TPS (7 for Bitcoin)


Permissioned blockchains: Fabric, Corda, Quorum, etc.

Pros:

• Improved TPS, still can not be compared with RDBMS or NoSQL

Cons:

• Few peers, consensus can be broken/manipulated by malicious nodes

Why CLD is important & valuable ?

- Motivations
 - Decentralization is not proved to be indispensable for permissioned blockchain.
 - Conventional permissioned blockchain and CLD systems:
 - Low performance, storage overhead, regulatory issues, limited external auditability
- Gartner Forecast Gartner.
 - Gartner Strategic Vision 2019

Strategic Planning Assumption

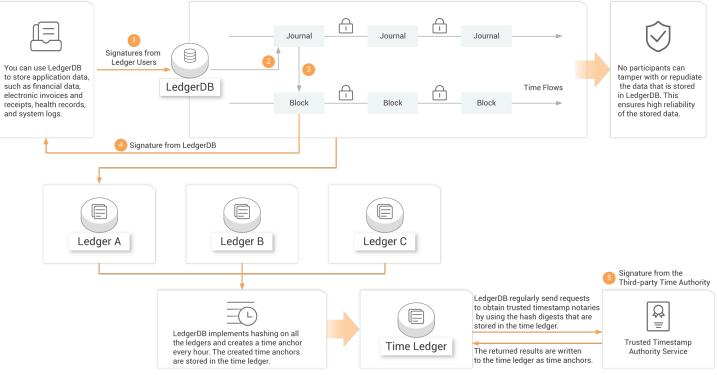
By 2021, at least 20% of projects envisioned to run on permissioned blockchains will instead run on centralized, auditable ledgers.

• Gartner Strategic Vision 2020

By 2021, most permissioned blockchain uses will be replaced by ledger DBMS products.

Highlight and Comparison

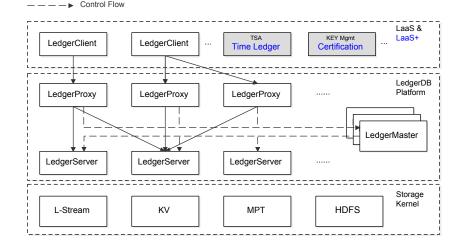
 LedgerDB – a ledger database that provides tamper-evidence and non-repudiation features in a centralized manner (CLD), which realizes strong auditability, high performance, and data removal support.


• Key comparisons between LedgerDB and other systems.

System	Throughput	Auditability				Removal		Non-Repudiation		Provenance
	$(\max TPS)$	external	third party	peg	capability	purge	occult	server-side	client-side	native clue
LedgerDB	100K+	1	TSA	1	strong	1	1	1	1	✓
QLDB [7]	1K+	X	×	X	weak	X	×	×	×	X
Hyperledger [6]	1K+	×	×	X	weak	×	×	1	1	X
ProvenDB [40]	10K+	×	Bitcoin	1	medium	×	1	×	×	×
Factom [43]	10+	1	Bitcoin	1	strong	×	×	1	 ✓ 	X

How it works

The time ledger is a public ledger.



LedgerDB system architecture.

Ledger master - manage the runtime metadata of the entire cluster (e.g., status of servers and ledgers) and coordinate cluster-level events (e.g., load balance, failure recovery).

Ledger proxy - receive client requests and preprocesses, and then dispatch them to the corresponding ledger server.

Ledger server - complete the final processing of requests, and interact with underlying storage layer that stores ledger data.

Data Flow

LedgerDB Operators and APIs.

Append - append user transaction or system-generated transaction to ledger.

Retrieve - get qualified journals from ledger.

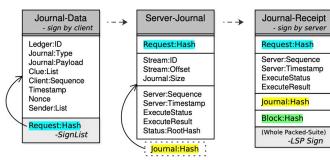
Verify - verify integrity and authenticity of returned journals from journal proofs.

Create - create a new ledger with initial roles and members.

Purge - remove obsolete journals from ledger.

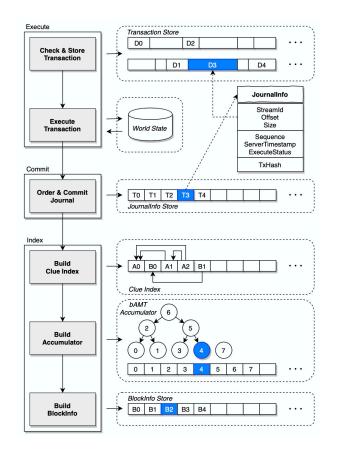
Occult - hide journal(s) from ledger.

Recall - rollback a purge (within a limited time window).


Delete - removes entities in the system, such as a ledger, a role, a member, or a clue.

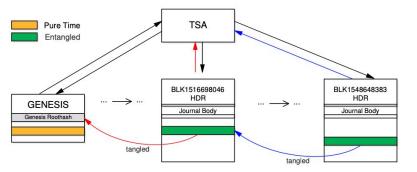
Operator	Method
Create	Create(ledger_uri, enum, op_metadata)
Append	AppendTx(ledger_uri, tx_data, clue, set)
	SetTrustedAnchor(ledger_uri, jsn, level)
	GrantRole(ledger_uri, member_id, role)
	GrantTime(ledger_uri, timestamp, proof)
Retrieve	GetTx(ledger_uri, jsn)
	ListTx(ledger_uri, ini_jsn, limit, clue)
	GetTrustedAnchor(ledger_uri, jsn, level)
	GetLastGrantTime(ledger_uri, timestamp)
Verify	Verify(ledger_uri, jsn clue, data, level)
Purge	Purge(ledger_uri, block)
Occult	Occult(ledger_uri, jsn clue)
Recall	Recall(ledger_uri, purged_point)
Delete	Delete(ledger_uri, enum, op_metadata)

Journal Management



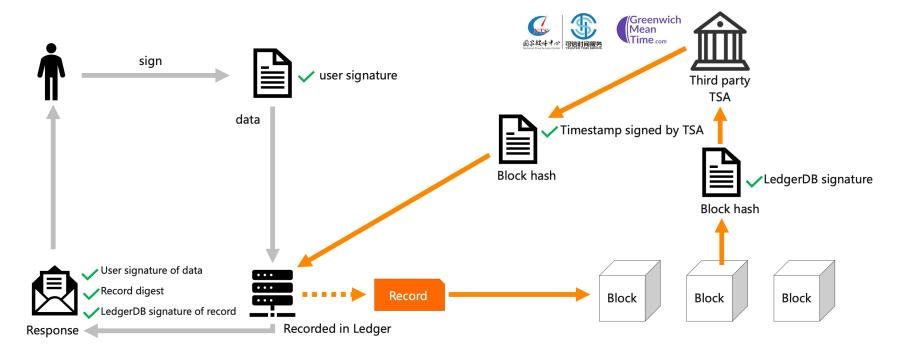
LedgerDB adopts an *execute- commit-index* transaction management approach:

① execute - a transaction first enters the execute phase based on its transaction type. It runs on ledger proxy for better scalability.


commit - collect multiple executed transactions, arranges them in a global order (jsn), and persist them to the storage system. It runs on ledger server.
 index - start on ledger server to build indexes for subsequent data retrieval and verification.

Two-way peg TSA notary journals

\leftarrow TSA Details

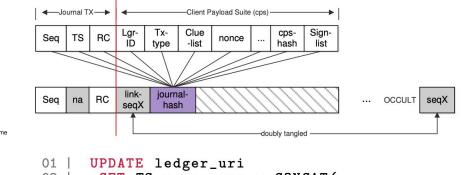

Basic Information

Credential Number	TTAS_S.0.2_89585865942283255553107719257575409290621824 Verify
Hash	5f1511adfe944bf82f7640308dea9b7ea29ba89bebe47ec507c80d0dcd23d93c
Block Height	82961
Timestamp	2020-07-15 17:00:21
Timestamp Encoding	1f8b080000000000000bd546950535718cd5b7821 2421c44456c128422318725f169228a2145c2a9b858

- A TSA journal contains a ledger snapshot (i.e., a ledger digest) and a timestamp, signed by TSA in entirety. These journals are mutually entangled between each other, which provide external auditability for timestamps.
- Two-way peg protocol: ① a ledger digest is first submitted and then signed by TSA;
 ② TSA journal is recorded back on ledger as a TSA journal.
- We offer T-Ledger service on Alibaba Cloud LaaS+ (Ledger-as-a-Service).

Credibility guarded by multipart signatures

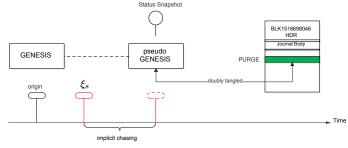
Verifiable Data Removals


Purge

A purge operation deletes a set of contiguous (obsolete) journals starting from genesis to a designated jsn on ledger Occult

04

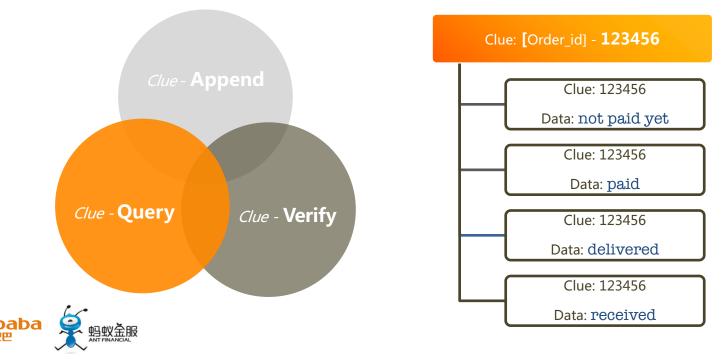
05


An occult operation converts the original journal to a new one that only keeps its metadata, and retains its digest.

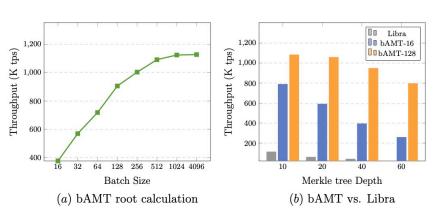

```
02 | SET TS = na, cps = CONCAT(
03 | seqX, journal_hash, blanks)
```

```
WHERE jsn = Seq
```

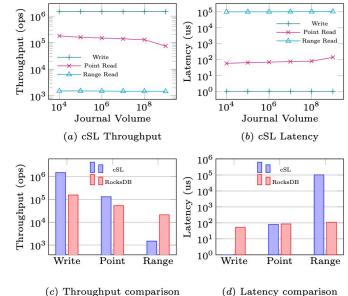
```
OR cid = des_cid;
```



01 | DELETE FROM ledger_uri 02 | WHERE jsn < pur_jsn;

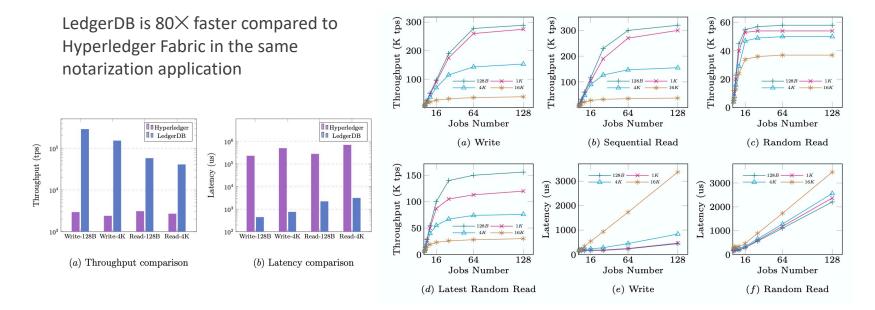

Clue – Native lineage in LedgerDB

- A clue is a user-specified label (key) that carries on business logic for data lineage.
- Quick index is supported to fetch or verify through related events in chronological order.

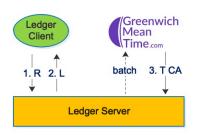


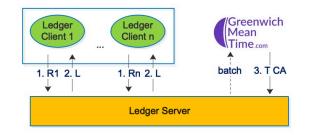
Evaluation – clue Skiplist (cSL) & batch accumulated Merkle-tree (bAMT) cSL vs. RocksDB

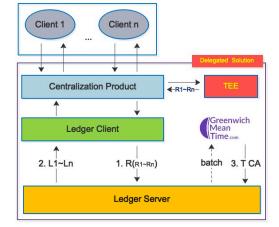
bAMT vs. Libra accumulator



Evaluation – performance and appl


LedgerDB end-to-end performance

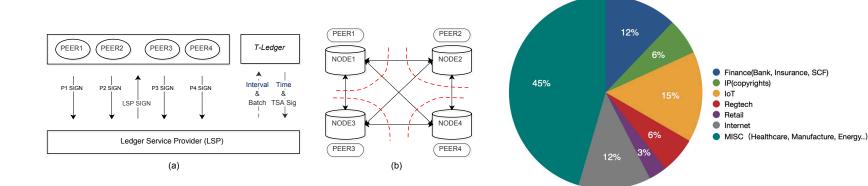



LedgerDB Solution Category

Mono Ledger

Federal Ledger

Delegated Ledger



LedgerDB in Production

Federated ledger vs. permissioned blockchain

LedgerDB customer use cases

Decentralized vm-like exec is just an implementation, the soul of consensus in ledger technique is dancing with time and cryptographic theorem.

- LedgerDB

https://www.alibabacloud.com/product/ledgerdb

xinying.yang@alibaba-inc.com

Thanks!

